BZOJ2956 [清华集训2013] 模积和
2018 年 03 月 14 日发布.
Description
给定$n,m$,求 $$ \sum_{i=1}^n\sum_{j=1}^mi\neq j(m \bmod j) $$ $n, q\leqslant10^9$。
Solution
令$f(n)=\sum_{i=1}^n(n\,mod\,i)$,则答案即为$f(n)f(m)-\sum_{i=1}^{min(n,m)}(n\,mod\,i)(m\,mod\,j)$
都可以$O(\sqrt n)$数论分块解决。
Code
#include <algorithm>
#include <cstdio>
const int mod = 19940417;
const int inv6 = 3323403;
typedef long long LL;
inline LL calc(int n) { n %= mod; return (LL)n * (n + 1) / 2 % mod; }
inline LL calc2(int n) {
%= mod;
n return (LL)n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}
int solve(int n) {
int ans = (LL)n * n % mod;
for (int i = 1, last; i <= n; i = last + 1) {
= n / (n / i);
last = (ans - (LL)(calc(last) - calc(i - 1)) * (n / i) % mod) % mod;
ans }
return ans;
}
int solve2(int n, int m) {
if (n > m) std::swap(n, m);
int ans = (LL)n * n % mod * m % mod;
for (int i = 1, last; i <= n; i = last + 1) {
= std::min(n / (n / i), m / (m / i));
last = (ans
ans - (LL)(calc(last) - calc(i - 1)) * ((LL)(n / i) * m % mod + (LL)(m / i) * n % mod) % mod
+ (LL)(calc2(last) - calc2(i - 1)) * (n / i) % mod * (m / i) % mod) % mod;
}
return ans;
}
int main() {
int n, m;
("%d%d", &n, &m);
scanf("%d\n", (int)((((LL)solve(n) * solve(m) - solve2(n, m))% mod + mod) % mod));
printfreturn 0;
}